検索
連載

分かる! 太陽電池の仕組みと種類モバイル技術の基礎講座(1/3 ページ)

環境配慮型エネルギーとして、太陽電池はさらなる普及が求められている。同時に発電効率の向上と低コスト化を図るため、太陽電池メーカーは各社、工夫を凝らして技術開発を進めている。ここでは太陽電池の種類と特徴、そして発電の原理を基礎のキソから解説する。

PC用表示 関連情報
Share
Tweet
LINE
Hatena
photo

@IT MONOistで掲載された記事を転載しています



登場人物の紹介

夏子

編集部に配属された若手社員。モバイルビジネスパーソンに満足してもらえるような記事を書こうと勉強の真っ最中。冷静で頭の良さそうな雰囲気を醸し出しているが、中身は妄想系。負けずぎらいな一面も


ムサシ

ガジェット好きの自称デジタル人間。デジタル製品のことなら細かいICの隅々まで何でもこい。基本的には物静かだが、得意分野になると熱く語り始める。女の子に「すごい!」といわれると、やる気が出る



はじめに

 人工衛星や宇宙ステーションなど宇宙での電源確保、また住宅/工業施設の屋根などに設置して電気を作り出する太陽電池。身近なところでは電卓の電源としても活躍しているが、近年では携帯電話などのモバイル機器にも搭載されるなど、その用途を広げている。

 環境配慮型エネルギーとして、太陽電池はさらなる普及が求められている。同時に発電効率の向上と低コスト化を図るため、太陽電池メーカーは各社、工夫を凝らして技術開発を進めている。ここでは太陽電池の種類と特徴、そして発電の原理を基礎のキソから解説する。

――かばんの中は常に複数の電子機器で溢れているムサシくん。最新機器を自慢にしているが、そんな彼に時折訪れるやっかいな出来事があった。

photo

あーあ、またバッテリー切れちゃった。


photo

どうしたの、ムサシくん? あ、携帯の充電が切れたの?


photo

うん、そうなんだよ。Windows mobileの方も切れちゃったし……。ほんと、電子機器はこれがネックだな。


photo

ふふ。


photo

なに?


photo

じゃーん! ソーラーケータイ!


photo

……。あ、買ったんだ。


photo

そう、いいでしょ!? これなら緊急時に充電が切れても大丈夫。10分ほど太陽に当てて充電すれば数分は通話できるし、メールも送れるよ。ムサシくんもこれにすればいいのにー。


photo

まぁボクは色素増感型の太陽電池がのったカラフルな携帯が出るのを待ってるからいいよ。


photo

なにまた専門用語とか使って。太陽電池は太陽電池でしょ!


photo

へー、夏子ちゃん知らないんだ(ニヤリ)。太陽電池にもいろんな種類があるんだよ。


photo

ふんっ。それくらい知ってるけど!


photo

はいはい。じゃあ簡単に説明してあげるよ。


太陽光発電の仕組み

 現在実用化されている太陽電池のほとんどは、コンピュータや家電製品などの電子機器で多く使用されているのと同じ「半導体」でできている。

photo

ハンドウタイ(半導体)って何?


photo

半導体っていうのは、名前の通り半ば導体の物質のこと。導体は電気を流す性質があって、その反対が絶縁物だから、半導体はその(導体と絶縁体の)中間の性質を持っている。つまり、普段は電気を流さないけど、何かしらの“刺激”を与えると、その刺激に励起されて、電気を流すんだ。夏子ちゃんが持っている携帯電話にもたくさんの半導体が使用されているんだよ。


photo

へー。もしかして太陽光もその“刺激”っていうこと?


photo

そうそう。光を当てるとその光に刺激されて電気が発生するのが太陽電池。一般に広く使用されているのがシリコンという半導体だけど、ほかの半導体でも同じことが起きる。


photo

じゃあ実際にどうやって電気が発生するかを解説しよう。


太陽電池の発電原理

 原子にはマイナス(−)電子とプラス(+)電子(陽子)が存在しており、それらは普段、マイナスとプラスが釣り合った形で平衡を保っている(地球が太陽の周りを回っているように、電子は原子の中にある原子核の周りをゆるやかに回っている)。しかし、太陽光が当たると原子はその光に刺激され、プラスとマイナスが分かれてしまう(電子は自分の軌道から飛び出す)。

photo
プラスとマイナスに分かれることが、電気を発生する第一歩

 分かれてしまった電子は自由に動くことのできる自由電子となるが、それらをうまく集めて取り出す役割をしているのが太陽電池。

photo

自由電子を集めるにはどうしたらいいの?


photo

半導体にはプラスの電子が集まる「P(Positive)型半導体」とマイナスの電子が集まる「N(Negative)型半導体」というものがあって、太陽電池もこの2種類の半導体を用いているんだ。


photo
異なる性質を持つ2つの半導体を使用することで、電子をプラスとマイナスに分ける

 太陽電池を作るときには、P型半導体とN型半導体という2つの層を作る。そして光が当たると、2つの半導体の間(PN接合部)付近に発生する内部電界によってプラスはN型半導体に、マイナスはP型半導体にそれぞれ引き寄せられる。

photo

 電気の流れは乾電池と同じなので(プラスからマイナスに電子が流れることで電気が発生)、プラスの電極になるP型半導体とマイナスの電極になるN型半導体に電極をつなぐことで、電気エネルギーとして取り出すことができる。

photo

以上が基本的な太陽電池の仕組み。ただ、色素増感太陽電池など、一部例外として違う方法を用いているものもある(色素増感太陽電池の仕組みについては3ページ目で紹介します)。


太陽電池の種類、特徴

photo

CCDはバケツで順々に運んでいるのに対し、CMOSは先に電圧変換することで金属配線で一気に送っている。そこに処理速度の違いが出てくるんだ。


photo

材料が違うと何が違うの? 発電量とか?


photo

そうだね、あと価格(製造コスト)も違うかな。まずは下表を基に比較してみよう。


photo
photo

 開発されたものとしては単結晶シリコン太陽電池が最も古く、1950年代に登場した。現在でも多くの企業がこの太陽電池を製造しており、発電効率も比較的良い。一方、多結晶シリコン太陽電池は単結晶に比べると作り方が比較的簡単なため、製造コストが低いことから、主に1980〜1890年代に日本で住宅向けの需要ができた(大量生産が求められた)際に開発された。

 1970年代のアメリカで発祥したシリコン系の薄膜太陽電池は、別名アモルファス(非結晶という意味)とも呼ばれており、日本では1980年代に実用化された。ガラス基板上に薄くシリコンを製膜することで、発電する。シリコンの使用量が少ないことから製造コストは安く済むが、結晶系太陽電池と比較すると発電効率が低くなっている。

 化合物系太陽電池は、主に人工衛星用として用いられている。材料にシリコンではなく、ガリウム、砒素、リン、ゲルマニウム、インジウム、といった元素をうまく組み合わせ、それを2層3層に積み上げることによって、シリコンでは実現できないような高変換効率の太陽電池を作れるとしている。

photo

さっきから“変換効率”っていう言葉がたくさん出てくるけど、それって太陽光を電気に変換する割合(率)ってことだよね? 具体的にどのくらいの面積当たりとか、そういう定義はあるの?


photo

良いところに気が付いたね! それは(次ページ)で解説しよう。


Copyright © ITmedia, Inc. All Rights Reserved.

       | 次のページへ
ページトップに戻る