検索
Special

スイッチングレギュレータのノイズを包括的に理解するアナログ回路設計講座(25)

スイッチングレギュレータでは、3種類のノイズが発生します。スイッチングに伴うリップル、広帯域にわたるノイズ、高周波のスパイクの3つです。本稿では、まずこれらについて詳細に説明します。その上で、入力ノイズの抑制に関連する項目として、スイッチングレギュレータのPSRRについて解説を加えます。スイッチングレギュレータのノイズについて包括的に理解するのは、低ノイズの設計を実現する上で非常に重要なことです。それにより、スイッチングレギュレータの後段にLDOレギュレータを配置する必要がなくなり、電力変換効率の向上、ソリューションのサイズの縮小、設計コストの低減を実現できるからです。

PC用表示
Share
Tweet
LINE
Hatena
PR

はじめに

 一般に、スイッチングレギュレータの出力には、LDO(低ドロップアウト)レギュレータと比べてかなり多くのノイズが含まれます。一方、LDOでは大量の熱が生じるので、それに対応するための設計が複雑化します。スイッチングレギュレータのノイズについて包括的に理解するのは重要なことです。LDOレギュレータと同じレベルまでノイズを低減したスイッチングソリューションを設計するためには、そのことが必須となります。電流モードで制御を行う降圧レギュレータは最も広く使われているので、解析および評価も十分に行われてきました。スイッチングレギュレータでは、スイッチングに伴うリップル(以下、リップルノイズ)、広帯域にわたるノイズ(以下、広帯域ノイズ)、スイッチングが原因で生じる周波数の高いスパイク(スパイクノイズ)という3種類のノイズが発生します。本稿では、これらについて把握するための信号解析手法について説明します。その上で、入力ノイズの抑制において重要な役割を果たすスイッチングレギュレータのPSRR(Power Supply Rejection Ratio:電源電圧変動除去比)について解説を加えます。

リップルノイズ

 ここでは、降圧コンバータの出力に現れるリップルノイズの計算式を提示します。その理論は、基本波と高調波の関係に基づいています。

 スイッチングレギュレータでは、そのトポロジと基本的な動作によって、ピークtoピークの電圧振幅が数ミリボルトから数十ミリボルトのリップルノイズが発生します。スイッチングレギュレータで発生するノイズの大半は、このリップルノイズです。リップルノイズは周期的な性質を持ち、予測が可能な信号だとされています。スイッチング周波数が固定値である場合、時間領域ではオシロスコープ、周波数領域ではフーリエ解析を使うことによって、容易に識別、測定が行えます。

 図1に示したのは、標準的な降圧レギュレータの概念図です。2個のスイッチが交互にターンオン/ターンオフすることにより、SWノードの電圧VSWは、デューティサイクルと入力電圧によって決まる矩形(くけい)波となります。このVSWは、以下の式で表すことができます。


図1:降圧レギュレータの概念図

 ここで、VINは入力電圧、Dは降圧レギュレータのデューティサイクルです。デューティサイクルは、VOUT/VINに等しくなります。

 VINが決まれば、VSWの基本波成分と高調波成分は、デューティサイクルのみに依存します。図2は、VSWの基本波/高調波の振幅とデューティサイクルの関係を示したものです。デューティサイクルが50%に近い値になると、基本波の成分がリップルノイズの振幅の大半を占めることが分かります。


図2:VSWの基本波/高調波の振幅とデューティサイクルの関係

 降圧レギュレータの出力には、LC(インダクタ、コンデンサ)段が設けられます。その伝達関数は、次式のようになります。

 ここで、Lはインダクタの値、DCRはインダクタの抵抗値、CLはインダクタの並列容量値です。

 またCOUTはコンデンサの値です。ESLはコンデンサの等価直列インダクタンスの値で、ESRはコンデンサの等価直列抵抗の値です。

 ここまでに示した式を使用し、VOUTは以下のように表されます。

 計算を簡単にするために、出力のLC段については20dB/decadeの減衰特性を持つものとします。また、VOUTのリップルノイズに含まれる基本波/高調波の振幅とデューティサイクルは、図3に示した関係になっていると仮定します。3次をはじめとする奇数次の高調波は、デューティサイクルが50%に近くなると、偶数次の高調波よりも振幅が大きくなります。また、高次の高調波は、LC段によって減衰されることから、振幅がより小さくなります。リップルノイズ全体の振幅と比べても、その比率はかなり小さいと言えます。まとめると、VOUTにおいては、基本波の振幅がリップルノイズの主成分になるということです。


図3:VOUTのリップルノイズの振幅とデューティの関係。リップルノイズに含まれる基本波/高調波の振幅を示しています。

 降圧レギュレータでは、入力電圧、デューティサイクル、スイッチング周波数、LC段に依存して基本波の振幅が決まります。一方で、これらのパラメータは、効率やソリューションのサイズといったアプリケーションの要件にも影響を及ぼします。そのため、リップルノイズを削減するためには、ポストフィルタを追加することが推奨されます。

広帯域ノイズ

 スイッチングレギュレータの広帯域ノイズは、出力電圧にランダムな振幅で現れます。これは、周波数に対するノイズ密度(単位はV/√Hz)、またはノイズ電圧(単位はVrms)で表すことができます。ノイズ電圧は、周波数の全範囲にわたりノイズ密度を積分した値(積分ノイズ)という意味になります。ICの製造プロセスとリファレンスフィルタの設計上の制約から、スイッチングレギュレータの広帯域ノイズは、主に10Hz〜1MHzの周波数範囲に現れます。低い周波数範囲のノイズについては、フィルタを追加して削減するのはかなり難しいと考えられます。

 標準的な降圧レギュレータでは、広帯域ノイズのピークtoピーク電圧は、約100μV〜1000μVとなります。つまり、リップルノイズよりも振幅がかなり小さいと言えます。ただ、リップルノイズを削減するためにフィルタを追加する場合には、スイッチングレギュレータの出力VOUTに含まれるノイズの主成分は、広帯域ノイズになる可能性があります。図4は、フィルタを追加しない場合の出力の例です。これを見ると、降圧レギュレータの出力ノイズの主成分は、リップルノイズであることが分かります。一方、図5は、フィルタを追加した場合の出力の例です。広帯域ノイズが出力ノイズの主成分になっていることが分かります。


図4:フィルタを追加しない場合のVOUT

図5:フィルタを追加した場合のVOUT測定を実施する際には1000倍のプリアンプを使用しました。

 スイッチングレギュレータの出力に含まれる広帯域ノイズを識別、解析するためには、レギュレータの制御スキームに関する情報とブロックごとのノイズに関する情報が必要になります。図6に、電流モードの標準的な降圧レギュレータのモデルを示しました。このモデルは、このレギュレータの制御スキームとブロックごとのノイズ源を表しています。


図6:電流モードの標準的な降圧レギュレータのモデル

図7:ADP5014の出力ノイズ性能。LCフィルタを追加しています。

 ループへの入力ノイズは、制御ループの帯域内では出力に伝搬しますが、ループの帯域外では減衰します。スイッチングレギュレータでは、低ノイズのエラーアンプEAとリファレンスの設計が重要です。

 ユニットにおけるフィードバックのゲインによって増幅されるのは出力電圧のレベルだけで、ノイズのレベルは維持される必要があります。最大の課題は、システム全体の中から最大のノイズ源を見つけ出し、回路の設計によってノイズを低減することです。

 アナログ・デバイセズの「ADP5014」は、4個の降圧レギュレータを内蔵するICです。電流モードの制御スキームを採用した製品であり、1つのシンプルな外付けLCフィルタを使用することで、ノイズを大きく低減できるように最適化されています。その出力ノイズ性能は、10Hz〜1MHzの周波数範囲全体で20μVrms未満です(図7)。

スパイクノイズ

 3つ目のノイズはスパイクノイズです。これには、高周波のスパイクとリンギングが含まれます。これらのノイズは、レギュレータの出力スイッチがターンオン/ターンオフする際のトランジェントに伴って生成されます。これを避けるには、ICの回路とプリント基板の回路のそれぞれにおいて、パターンの寄生インダクタと寄生容量について考慮する必要があります。電流の高速なトランジェントによって、降圧レギュレータのSWノードに、非常に周波数の高い電圧スパイクとリンギングが発生します。スパイクとリンギングは、電流負荷が高くなると増加します。図8に、降圧レギュレータにおいてスパイクノイズがどのような形状で発生するのかを示しました。スイッチがターンオン/ターンオフする際のスルーレートに依存し、スパイク/リンギングの最高周波数は20MHz〜300MHzになります。寄生インダクタンスと寄生容量が存在することから、出力にLCフィルタを付加しても、減衰効果はあまり得られないかもしれません。なお、上述したすべての伝導パスと比べても最も望ましくないのは、SWノードとVINノードからの放射ノイズです。その周波数は非常に高いことから、出力電圧や他のアナログ回路に影響が及びます。


図8:降圧レギュレータで発生する高い周波数のスパイクとリンギング

 高周波のスパイクとリンギングを削減するためには、アプリケーションとICの両方で、効果的な設計、実装が行われている必要があります。まず、LCフィルタまたはフェライトビーズを負荷の位置に追加します。通常、それによって、出力のスパイクはリップルノイズよりもかなり小さくなります。ただし、この対策により、さらに高い周波数成分が加わる点には注意が必要です。次に、SWノードをシールドするか、ノイズ源から遠ざけます。また、出力側や感度の高いアナログ回路から入力ノードを遠ざけます。加えて、出力インダクタにもシールドを適用します。レイアウト設計と配置は慎重に実施することが重要です。更に、スイッチングレギュレータのスイッチがターンオン/ターンオフする際のスルーレートを最適化すると共に、スイッチの寄生インダクタンスと抵抗を最小化することによって、SWノードのノイズを効果的に削減します。ICの設計については、アナログ・デバイセズのSilent Switcher®(サイレント・スイッチャ)技術が好例として挙げられます。この技術はVINノードのノイズの削減に有効です。

スイッチングレギュレータのPSRR

 PSRRとは、電源の変動の影響を除去する能力のことです。スイッチングレギュレータで言えば、入力(電源)のノイズが出力に現れないよう、どれだけ抑制できるかということを表します。ここでは、低い周波数範囲を対象として降圧レギュレータのPSRR性能を解析します。なお、非常に高い周波数のノイズの大部分は、先述したような伝導パスではなく、放射パスを通して出力電圧に影響を及ぼします。

図9に、降圧レギュレータの小信号モードのモデルを示しました。これを基にすると、PSRRは次式のように表すことができます。


図9:降圧レギュレータの小信号モードのモデル。入力電圧から出力電圧までに対応しています。

 ここで、Gig(s)、Gid(s)は、それぞれ以下の式の通りです。

 また、各変数/関数の意味は、それぞれ以下の通りです。

Fm:スロープ・ゲイン
Fg:制御用の入力電圧
Rcs:電流検出用のゲイン
Zo(s):出力容量と負荷
Tv(s):ループの伝達関数

 ここで、上記のモデルを使用した計算値(図10)とシミュレーション結果(図11)を比較してみると、両者がよく一致していることが分かります。つまり、この小信号モードのモデルは、十分に実用性があるということです。

 スイッチングレギュレータのPSRRは、低い周波数範囲ではループゲイン性能によって決まります。また、スイッチングレギュレータの構成は、中間周波数範囲(100Hz〜10MHz)の入力ノイズを抑制できるLCフィルタを備えていることに相当します。この範囲では、LDOレギュレータのPSRRよりも、かなり優れた性能が得られます。つまり、スイッチングレギュレータは、低い周波数ではループゲインが高いため、理想的なPSRR性能を発揮し、中間周波数範囲ではLCフィルタが効果的に働くということです。


図10:小信号モードのモデルを使用し、PSRRを計算した結果

図11:SIMPLISモードによるPSRRのシミュレーション結果

まとめ

 まとめA/DコンバータやD/Aコンバータ、クロックIC、PLLなど、多くのアナログ回路では、大電流に対応できるクリーンな電源が必要になります。各種のデバイスには、電源ノイズについて、異なる周波数範囲を対象とした異なる仕様と要件が存在します。効率が高く低ノイズのスイッチングレギュレータを設計、実装し、多くのアナログ回路で求められる電源ノイズの仕様を満たすためには、さまざまなスイッチングレギュレータのノイズについて包括的に理解すると共に、電源ノイズに関する要件を把握しなければなりません。本稿で紹介したような低ノイズのスイッチングレギュレータを採用すれば、LDOレギュレータと比べて、高い電力変換効率、小さなソリューションサイズ、コストの削減を実現できます。



著者プロフィール

Leo Liu

 Leo Liuは、2005年に、中国のセールス・チームに所属するフィールド・アプリケーション・エンジニアとしてアナログ・デバイセズに入社しました。2011年、パワー・マネージメント製品グループにアプリケーション・エンジニアとして異動。以来、PMU製品のアプリケーションを担当しています。浙江大学(杭州市浙江)で電気工学の学士号と修士号をそれぞれ2001年、2004年に取得しました。


Copyright © ITmedia, Inc. All Rights Reserved.


提供:アナログ・デバイセズ株式会社
アイティメディア営業企画/制作:EDN Japan 編集部/掲載内容有効期限:2019年8月31日














































industry 4.0の実現へ

スマート・ファクトリーに向けた変革であるインダストリー4.0。しかしながら、インダストリー4.0がもたらすメリットは最小限しか認識されていません。エレクトロニクス業界にもたらすインダストリー4.0のメリットを、あらためて考察していきましょう。

オートメーション分野で活用されるイーサネット

産業用イーサネットが製造分野にもたらすメリットについて解説します。最初に解説するのは、プラントのオートメーション・システムに適用される技術としてイーサネットが有用な選択肢になった理由についてです。

Dust Networks オススメ記事

ワイヤレス・センサ・ネットワーク技術が半導体工場の生産効率を高めた事例を紹介しよう。これまで人手に頼らざるを得なかった175本にも及ぶ特殊ガスボンベの常時監視を大きな工事を伴わず自動化し、ガスの使用率を高めるなどの成果を上げた事例だ。

ページトップに戻る