上記の計算結果と波形を検証するために、40%のデューティ比で動作し、60Wをわずかに上回る電力を供給する簡潔なフライバックコンバーターをキャプチャーしました。電気回路図を図5に示します。漏れインダクタンスは50μHに設定されており、600μHの1次側インダクタンス(8.3%)を想定している場合は、疎結合のトランスを意味することになります。
シミュレーションから、C2両端の電圧がVclpに等しい以下の動作ポイントを抽出できます。
Ip=1.77A
Iv=672mA
Vclp=528V
(14)で表記される漏れインダクタンス磁化時間について、176ナノ秒の測定結果が得られました。したがって、65kHzのスイッチング周波数を使用する場合、デューティ比d1は次のようになります。
理論的には、トランスの巻線比Nが0.25の場合、このフライバックコンバーターの出力電圧は、式(20)の定義に従って20Vに等しくなります。代わりに式(21)を適用する場合、出力電圧は、実際は次式に等しくなります。
シミュレーションの出力電圧は図7に示す通りであり、この値が正しいことを確認できます。シミュレーションで使用したダイオードの順方向電圧降下が0Vに等しいことに注意してください。ダイオード・モデルで拡散パラメーターNを10mに設定すると、この結果を得ることができます。
漏れインダクタンスのリセット時間が分かれば、出力電流も高い精度で計算できます。シミュレーションの結果、672mAの谷電流および、672mAのピーク電流という値が得られました。式(16)を適用し、528Vのクランプ電圧(図5でC2両端の電圧)を考慮すると、漏れインダクタンスのリセット時間は次式のようになります。
また、この値は次のデューティ比に対応します。
スイッチがオフになってから193ナノ秒後に漏れインダクタンスがリセットされた時点の2次側ピーク電流を推定することもできます。式(13)を適用すると、次の値が得られます。
図3の下側にある波形から、曲線を形成するさまざまな領域を計算することで、ダイオード内および負荷内を循環する平均電流を求めることができます。
数値を代入すると、次のようになります。
この値は図8に示す波形ビュワーで得られたものです。
Copyright © ITmedia, Inc. All Rights Reserved.